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Abstract. Strong evidence is presented that an alternating magnetic field can only hamper the
tunnelling of magnetization. Itis surmised that this is a ‘no-go’ theorem, which is to be contrasted
with the particle case where an ac field favours tunnelling. We employ a WKB formalism, study
a mesoscopic spin in various anisotropies, and show how to apply the averaging method to the
high-frequency regime so as to reduce the problem to one with a stationary field. The latter
can be analysed straightforwardly and so can the adiabatic case. In addition, we put forward an
exactly soluble case underlining the claim that hampering is quite a general phenomenon. Some
exceptions related to resonance are explained as well.

1. Introduction

Tunnelling is one of the most pronounced manifestations of quantum mechanics, in that an
object penetrates a region which is classically forbidden and, hence, inaccessible. There has
been a long-lasting interest in the tunnelling of particles [1, 2] but the attention attracted
by their spin counterparts is much more recent [3—10]. Generically, one studies a problem
with a symmetry and a tunnelling term that lifts some, usually twofold, degeneracy. The
eigenfunctions of the Hamiltoniaif then respect this symmetry; they occur in, say,
odd/even pairs, are localized both minima of H, and the system performs a coherent
oscillation between the two wells with a rate of the form! = ro‘l exp(—I/h). The
prefactorzy ! is an attempt frequency, is some action, and exp /i) may be interpreted
as a tunnelling probability.

Here we are interested in the tunnelling of a giant spin with spin quantum nusbet
under the influence of a time-dependent perturbation. The solution to this problem is of
particular relevance to mesoscopic magnetic moments [6, 10] in an anisotropy field. In the
stationary case, the difference between spins and particles is already remarkable. Whereas
particles give rise to an actiohwhich shows, typically, a square-root dependence upon the
coupling constants, spins exhibiti@garithmic dependency [3, 4]. In a periodically driven
system, particles commonly tunnel more quickly than under the influence of a constant
potential [11-13]. The key question is now: How slsinsbehave? To answer this question
we will study a few typical models in the context of the averaging method [14, 15], that
allows a reduction to a time-independent problem which is more easily accessible to, e.g.,
a WKB analysis [3, 4]. One has to realize, however, that the WKB analysis is instrumental
in solving a time-dependent problem such as the present one. We will also discuss an
exact solution, underlining our conclusion thatgeneral, and in contrast to the particle
case[11-13],a periodically driven spin is hampered when it is going to tunrelorder to
prepare the ground for the ensuing calculations, we must now make a small detour.
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The type of equation which we have to study is of the form

x=¢€f(t,x) f+T,x)= f(t,x) (1)

with some ‘small’ parametes > 0. The functionf (¢, x) and its partial derivative with
respect tax are uniformly bounded i andz by a positive constan¥ and are periodic in
t. Sincee is small as compared to/T, x hardly changes during a period of duratidh
and one may therefore average (1) so as to get the autonomous equation

1 T
j=eh)  fo) =7 [ o say @

where fy does not depend on time any more. The solution to (2) approximétg$o order
€ for timesr < 1/e. The key to the proof [14, 15] which is behind what follows is defining

ui(t, x) =/O dr’ [f (', x) — fo(x)]

noting that, whatever is, one has suypi(z, x)| < 2M T, and studying the time evolution of

z defined byx(¢) := z(¢) + €u1(z, z(¢)). A simple calculation shows thatsatisfies (2)—up

to an error Qe?). This is themethod of averagingl4, 15], which dates back to Lagrange.
The three periodically driven spin systems which we will study are typical examples,

and are characterized by the Hamiltonians

Hi = —yS?—§coswt)S, — oS, )
Hy = —yS? — acoswr)S, (4)
H3 = —y S? — a[cos(wt) S, + sin(wt)S,] (5)

with «, v, andé positive. The anisotropy which produces the ‘energy barrier’ is represented
by —)/SZZ. It is assumed to dominate the other terms so that we arrive at a well-defined
tunnelling problem where the spin tunnels along $hexis. Phrased differently, § < 'S
wherel" = yh has the dimension of frequency. Hy there is an oscillating magnetic field
parallel to the anisotropy axis; ifl, and Hs it is orthogonal to thez-axis. The fields
in Hy and H, are linearly polarized, and that d#; is circularly polarized. As forH;,
the unperturbed cask = 0 represents coherent tunnelling in that the Hamiltonian has a
symmetry: a rotation through about thex-axis; H, has the very same symmetry. It is
natural to compare the ac behaviour f with that for§ = 0, sinces # 0 in conjunction
with @ # 0 in general favours tunnelling of particles [12, (<> ¢). If spins were similar
to particles, kicking a spin periodically would have the same effect. It does notHEor
and Hs, the reference state is = 0. Given an unperturbed level splittin§E = hwy,
we discern three casesi > wg, resonancev ~ wg, and the adiabatic case <« wqg. For
all three Hamiltonians the reference (‘unperturbed’) operatoH,js= _VSZZ —aS,. Its
ground-state level splitting was computed more than ten years ago:

Fooy a(i>zs 1

rs

(cf. equation (C.19) in [3]).

As for the context of the present paper, a few historical and practical remarks are in
order. The problem of how a giant quantum spin tunnels was solved surprisingly late in
the history of quantum mechanics. It was only in 1986 that two types of solution appeared.
Enz and Schilling [5] solved a special case by mapping it onto a particle problem through
the Villain transformation. The particle problem was then solved to high precision by
means of a functional-integration technique. Van Hemmen &aitd [8] started with the
Schibdinger equation directly and developed a WKB formalism for quantum spins, which

for §>1 (6)
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is used throughout what follows. It allows both for high-precision calculations of the level
splitting and the tunnelling rate, and for a universal representation of these quantities, that
does not depend on the detailed form of the Hamiltonian and (thus) is less precise but has
been shown [4] to exactly agree with the spin-functional-integral results of Chudnovsky and
Gunther [6]. Until now, however, the Hamiltonian describing a system was not allowed to
be time dependent. Since it is a simple matter to put small magnetized particles, i.e., giant
spins, in a homogeneous magnetic ac field, and the strength of an external field is at one’s
disposal, we thought it worthwhile to analyse the ac problem in some detail.

In section 2 we treat the case of a linearly polarized field in the three frequency regimes
mentioned above. We will have recourse to the method of averaging at high frequencies,
to a two-level approximation at resonance, and an adiabatic treatment for low frequencies.
Circular polarization is to be discussed in section 3. The time evolution operatdisfor
can be obtained exactly.

2. Linear polarization

Our analysis is most easily performed in a spectral representatiorswitfagonal [3, 4]. In
the context of the WKB formalism thensatzor the wave function igy = exp[(i /) So+S4].
It is implicitly understood that we take the semiclassical limit> 0 andS — oo so that
hS = o is constant. Therf; is subdominant and can be dropped. For the time being,
however,# is finite. Furthermore, in our spectral representation= a(s)(T; + T_5)/2
and (Tur f)(s) = f(s £ h) while a(s) = +02—s2 and s ranges through the set
{mh: =S < m < S} C [—0,0]. The time-dependent Sdbdinger equation forHH; now
reads

oY (s,t)

Rt = —lys® + 8 coson] s, 1) - %a(s)[lﬁ(s L)+ y(s — R @)

2.1. The high-frequency regime

Let us assume thab > wo and use the interaction picture. This is equivalent to the
substitutiony (s, 1) = ¥ (s, ) exp{(i/h)[ys°t + 8s w1 sin(wt)]} and gives

mawg, B _ —%a(s)é”[ei@(“)&(s + R, 1) + e DY (s — Rk, 1)] (8)
whereTl" = yh and
D(s,t) = 2yst + (§/w) Sinwt. 9)

We imagine that the spin has to tunnel froers to o or conversely, and concentrate on
the region where =~ 0, so that (8) attains the form (1). If there is a transition, it takes
place on the time-scate, 1. Therefore, and because>> wp, we can average over the time
evolution during a single period of the external field. Assumirig 0 we average (8) over
one period and find

—8 Na ’

inVals, D) _
ot

whereaer = aJo(§/w). The Bessel functiony stems from

_%ért[eZiynv}a (s+h,1)+ e’ZiV”J/a (s —h,0)] (10)

2
Jo(z) = (1/271)/ d® cogzsin®)
0
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which is Bessel's integral [16, 17]. The ‘averaged’ functipplays the role of in (2) with

e corresponding tera(0)/h = oS, and obeys the same equation as a wave function in the
time-independent case wheye= 0; cf. (8) and (9). The only—but important—modification

is thata has been replaced lay; the latter reduces ta, if § = 0.

We can apply the averaging method, if two conditions hold. Frst, 1/T as discussed
after (1). In the present case this means théit« » = 27/T and implies [3]wy K .
Second, the argument @b in (8) should vary slowly with time:y|s|T <« 1. This is
equivalent tos| < hw/T. As long asw/ T > 1 the region where ~ 0 has a finite width.
Usually the spin has to tunnel fromo to o and conversely (or the like). If it is hindered
nears = 0, tunnelling is hampered or blocked.

The Bessel function/y has infinitely many zerog,, the first beingz; = 2.405.
Furthermore,|Jo(z)| < 1, and its maximum, i.e., 1, is assumedzat= 0. So we see
that a spin never tunnels faster than in the stationary case Wher@ becauséaes| < .

It can even get stuck, f/w := z corresponds to one of the zergsof the Bessel function
Jo. This allows a simple but striking experimental check: the spin gets stuck at discrete
frequencies whose ratios are determined by the Bessel zgros

Turning to H,, we perform the transformatiop := v exp(iys%/h), obtain

iﬁawa(s’ t) —
ot

and average this in the region wherez 0 so as to findres = 0. That is to say, tunnelling
is blocked completely—in clear contrast to the case whete 0.

—%a(s)é” coS )€ Y, (s + ki, 1) + €274, (s — T, 1)] (11)

2.2. The adiabatic case

The adiabatic case whe® <« wy can be handled straightforwardly. BecauBHe(r)
changes very slowly on the time-scajxgl given by the original tunnelling time, we can
consider it as a time-independent operator depending only on a formal paramatet
write H1(r) = Ho(d coswt) where the latter is defined through equation (21) below. The
discussion of section 3 leading to equation (31) is therefore relevant to this case also (recall
that|§ coswt| < § « T'S), and we conclude that the tunnelling probability—say, in the time
interval (t — angl, t+ angl)—suffers a small reduction proportional tdcoswt/ T'S)2.

The tunnelling rate foiH, is determined as follows [3]. We pick a certain timewrite
a(t) = acoYwt), and treat it as a constant as longaas) is outside a suitably chosen
neighbourhoodV (0) of zero so that the ‘effective’ tunnelling time is much less thant.
Keeping the proviso in mind that we stay outsid&0), we substitute the WKBansatz
¥ ~ exp(iSo/h), and computeSy(s, t) = W(s) — Et in the semiclassical limit, a& — 0O:

E = —ys?> —a(t)a(s) COS<88‘;V>. (12)

This we can solve foW. Now the tunnelling rate is~* = AE/nh and AE o |(¢¢|,)]
whereg, and¢, are the WKB wave functions belonging fowhich start either on the right
or on the left ofs = 0. We have arcc@®) = +(1/i) arccosliZ) and arccost¥) ~ In(2Z)

1 In the adiabatic regimep <« wo. However, the ‘effective’ tunnelling frequenayo(s) that one can compute
from equation (6) by replacing by « () becomes much smaller thanas time goes on. That is to say, starting
with o <« wp(0), one passes from the adiabatic case at0 to the high-frequency case, via resonance, as time
proceeds. FoHo, this is the heart of the problem in performing the adiabatic approximation. The neighbourhood
N(0) depends omv.
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for large Z. The upshot of the calculation is

0 a [ 21E|
T =1, exp[ 25In<|a(t)|/ya>]. (13)

In passing we note that the logarithm in the exponentialyfcal of spins[3, 4]. It
stems from the arccosh term. For the ground-state pair Bite- —y o2, we are left with
l= rgl[|a(t)|/2ya]25, which can be compared directly with (6). The order of magnitude
has been confirmed fully by a numerically exact diagonalization of the Hamiltonian [3],
which gives the level splitingAE = w7 /7. If desired, one may average® over one
period onceN (0) is small enough and, by Wallis’s formula [16], end up with an extra
prefactor—an explicit expression that decreasesy &&r1S for S large and entails a reduction

of the unperturbed tunnelling rate.

2.3. Resonance

The resonance case wheie~ wq is of some independent interest. Its treatment has
been included here since a spin offers some subtleties which are not present in the
standard argument [20]. Here we can invoke the two-level approximation [4], which is
specific to the resonance condition. We start with and write H; = H, + V (tr) where

H, = —ySZ? —aS, and V() = —§coqwt)S,. We concentrate on the ground-state pair
(0, 9% of H, with AE = E\” — E” = hwyo wherewio = wy is given by equation (6).

Let v = ¢\? exp(—i Et/h). The wave function can be expanded in the form

Y =Y a @yl o). (14)

Denoting differentiation with respect to time by a dot, we obtaia,i = >, Vyuax, the
V..« being the matrix elements with respect to th€s. In agreement with the two-level
approximation we restriot to the set{0, 1}. We have

S
Vio = —8 coslwr) € > o1 (m) mh g (m) (15)

m=—S

while the diagonal elementig, and V11 vanish since th@,ﬁo) are odd or even; there is no

harm in assuming them to be real. The sum in (15) is writtelwag For the ground-state
pair [3], vig & S. PuttingC = Sv19/2 and2 = w— w19, We are left with only two equations:

ao = iC(d” + e he ity ~ jcd¥ g, (16)
ayp = IC(€ + e )0l gy ~ i Ce ¥ g, (17)

The second equality is a consequence ofrtiiating-wave approximatiofil9], which entails
dropping the fast-rotating terms. It respects the normalization of the wave function. Since
2] <€ w + wyp and the frequencies under consideration are rather high, the approximation
is a good one. The above equations closely resemble but are not identical to those derived
by Rabi [21] in the thirties.

Given a first-order differential equation, one has to specify initial conditions. The
spin starts, say, on the left, in the neighbourhoodmot= —hS. Now for large S the
eigenfunctionspy” and ¢\” of H, have the remarkable property [3] that to a very high
precision the function$¢é°) + ¢§°))/f2 are localized atn > 0 andm < 0, respectively;
cf. also equations (26) below. We can therefore tag@®) = a1(0) = 1/+/2 as an initial
condition and ask whether at a later timave find ag(t) = —a1(t) = 1/+/2 or, in other
words, whether the spin is in the other well.
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We first study the case of perfect resonance, i.e., wkeee 0. Then (16) and (17)
can be solved directly. Lat denote the vectotag, a;) and leto, be the first Pauli spin
matrix. The solution isug(t) = a1(t) = exp(iCr)/~/2, becausan(t) = exp(iCoyt)a(0)
and the initial condition(1, 1)/4/2 is an eigenvector of, with eigenvalue 1. So the wave
function at timer is

1 :
1//'(t) — Tze—l(Eéo)/h——C)t [(ﬂ(()O) + e_lwmt(P;_O)] (18)

and the spin oscillates with the unperturbed frequengybetween the two wells.
For non-zera2 we proceedh la Rabi [21] and differentiate; twice, use (16) as well,
and get a second-order linear differential equation:

dy +iQa1 + C%ay = 0. (19)
This can be solved by the simpémsatz
a1(t) = Aexpinst) + Bexpliu_t)

where theu.. are the two roots of the equatiqr’ + Qu — C? = 0. Near resonance we
find a; = apexp(—iQ2t) and hence, due to (14),

V(o) =5 Magn)lpf + e gl"] (20)

asQ + w10 = w. That is, near resonance we find a narrow frequency window where the
spin oscillates in phase with the external field. One might think that resonance also occurs,
if, say, ® = wszg. In principle this is correct, were it not that the corresponding matrix
elementvsg vanishes to high precision. That is, we need another kind of argument. The
above reasoning hinges on the symmetry properties of the unperturbed eigenstates and, thus,
does not apply tdH,.

3. Circular polarization: an exactly soluble case

The third case (5) of a field with circular polarization can be treated exactly. The solution
to a time-dependent Sdbdinger equationH (1)y» = ik 9/t starting at timer = 1y is

the unitary grouplU (z, tp) satisfyingU (¢, t")U (¢', 1) = U (t, tp) with the initial condition
Ul(to, o) = 1. In the case ofH = Hs3(¢), the time evolution operatat/ (¢, ro) has a nice
closed form [18]. Indeed, if we define

Ho(w) = —ySZ — S, — S, (21)
and write Hy = Hp(w), then

Ul(t, ty) = exp(—lg) tSZ> exp[—;7 (t — to)Hoi| eXp<|;_:)toSz>. (22)
To prove (22) we note thdll (¢, 7o) = 1 and via a direct computation

ik AU(¢, t0) /0t = H3(t)U (¢, tg). (23)

Let |m) and|n) be two eigenstates & with eigenvalues:i andn, respectively. The
guantity

Pun(t) = [(m|U (£, 0)|n)|? (24)

is the transition probability for a spin starting im) at timer = 0 to be in statém) at time
t. Because of equation (22F,,, assumes the simple form

Py (1) = |(m|e 1 H0/ |y |2 (25)
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so the transition probability is fully determined i (w). We are interested in transitions
betweenjn < 0) and|m > 0), corresponding to a tunnelling situation.
Let us consider the case whene= S, n = —S in some detail. We recall that fes = 0

1
|S) ~ 72(¢é°> +¢1%)

1
S T (0O _ L0y 26
=51~ 5o — o) (26)
This approximation is a good one as longaas< I'S. Hereg” and ¢! are the lowest
even and odd eigenstates Bf(w = 0); cf. figure 8 in [3] or figure 7 in [4]. Using (26)
we find

Ps_s(1) ~ ;11|1 —e e (27)
and

max Ps,s (1) ~ Ps_s(mwpt) ~ L. (28)
For 0< w <« 'S we still have

|S) ~ ap + by
|=8) ~ by —ay (29)

whereg andy are eigenstates dfip(w), tending respectively t@y and¢® asw — 0.

However,¢ andy have no even—odd symmetry:

> lmlg)P > > [(mle)? (30)

m>0 m<0

the < sign holding fory,. We therefore have?+5? = 1 anda > 1/v/2,a—1/v/2 x w/TS.
Equations (25) and (29) then yield

Ps_s(t) < 4a*(1—a®) =1 — c(w/TS)? (31)

with somec > 0 of the order of unity. Asv increasespPs _s(¢) rapidly approaches zero
since the|+S) get closer and closer to two eigenstatestfw), which are separated by
an energy difference-2Shw.

The properties ofP,,, for m > 0 andn < 0 such thatin| > m and (m + |r|)T" > «
(in practice, whenn + |n| is of the order ofS) resemble that oPs _s: max P.,(t) as a
function of w has a local maximum close to 1 near the frequefigy — m)I" and decays
rapidly oncew moves away from this value. This holds because there are level crossings in
the spectrum of-y S2 — wS. atw = kI for all 1 < k < S: the eigenvalues belonging to the
eigenvectorsm) and|n) coincide for all pairgm, n) such thak = |n|—m. The degeneracy
of the (m, n) pair is lifted in the(m + |n|)th order of the perturbation byS,. The condition
(m + |n|)I’" > « implies that the other energy levels efySZZ — kI'S, are far away, as
measured in units akz. Therefore, one obtains two approximate eigenvector&q@kI")
as linear combinations dfz) and |r). Inverting this relation, we arrive at an expansion,
analogous to (29), fofm) and |r). The asymmetry: — b of the wave functions and the
tiny level splitting can be computed from the matrix elementgad§, )™ *!") sandwiched
betweenm) and|n). Now a — b vanishes a&/[(m + |n|)I"] approaches zero, and the level
splitting yields a tunnelling frequency similar to (6).

The present result fols fully confirms the approximate calculation féf, in the high-
frequency regime. It is easy to imagine more complicated Hamiltonians, e.g., a circular
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polarization about an arbitrary axis, but the reader will easily verify that one can just repeat
one of the above arguments—up to a simple modification.
We could take, for instance, theaxis as the rotation axis and study

Hy = —yS? — a[cos(wt) S, + Sin(wt)S,]. (32)

We then perform the very same transformation as the one from (7) to (8) and (9), and
replacea in (8) by « sin(wt) andé in (9) by «. Averaging (8) in the region where~ 0
we arrive at a vanishinges. Hence tunnelling of a mesoscopic spin is blocked.

4. Conclusion

In view of the available evidence we tentatively suggest that a periodically driven
mesoscopic spin is (nearly) always hampered or even blocked once the frequeacy
large enough. There are two cases: a linearly and a circularly polarized field. If the ac field
is linearly polarized and parallel to the anisotropy axis, as in (3), then there exists a narrow
transparent frequency window around the unperturbed tunnelling frequency. Outside this
window the spin is hindered both in the high-frequency regime and in the adiabatic case.
If the oscillating field is orthogonal to the anisotropy axis, as in (4), the spin is blocked
completely in the high-frequency domain and seriously hampered in the low-frequency
(adiabatic) range. Of course one might object that the high-frequency behaviour is to be
expected ‘since’ a rapidly changing external field in general hampers precession. Precession,
however, is in the classically allowed region whereas tunnelling is not. So hampering of
tunnelling is not physically evident. It is a big advantage of the WKB technique that it
allows a direct mathematical analysis of an ac field.

A circularly polarized field with its rotation axis parallel to the anisotropy axis, as in
(5), leads to easy tunnelling at the frequenaies= T, 2I', ..., ST and a blocking of the
spin in between and as increases beyondT'. This result is exact, at least as far as
time evolution is concerned. In the case where the direction of rotation is orthogonal to
the anisotropy axis, no exact solution is known (yet) and we have to invoke the averaging
method so as to infer that tunnelling is blocked. Spins are apparently hampered by an ac
field, once the frequency is high enough. At first sight this might contradict intuition, but
one has to realize that the time evolution operator, though linear, has the Hamiltonian
the exponentHence averaging is non-trivial.

On the basis of the present data we cannot but formulate the hypothesis that in general
an ac field hampers spin tunnelling. If so, the behaviour of spins is in clear contrast with
particle tunnelling [12] where, except for in the resonance case, a periodic dalimys
enhanceghe tunnelling rate. This makes mesoscopic spins a fascinating subject in their
own right.
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