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Abstract. Strong evidence is presented that an alternating magnetic field can only hamper the
tunnelling of magnetization. It is surmised that this is a ‘no-go’ theorem, which is to be contrasted
with the particle case where an ac field favours tunnelling. We employ a WKB formalism, study
a mesoscopic spin in various anisotropies, and show how to apply the averaging method to the
high-frequency regime so as to reduce the problem to one with a stationary field. The latter
can be analysed straightforwardly and so can the adiabatic case. In addition, we put forward an
exactly soluble case underlining the claim that hampering is quite a general phenomenon. Some
exceptions related to resonance are explained as well.

1. Introduction

Tunnelling is one of the most pronounced manifestations of quantum mechanics, in that an
object penetrates a region which is classically forbidden and, hence, inaccessible. There has
been a long-lasting interest in the tunnelling of particles [1, 2] but the attention attracted
by their spin counterparts is much more recent [3–10]. Generically, one studies a problem
with a symmetry and a tunnelling term that lifts some, usually twofold, degeneracy. The
eigenfunctions of the HamiltonianH then respect this symmetry; they occur in, say,
odd/even pairs, are localized inboth minima of H , and the system performs a coherent
oscillation between the two wells with a rate of the formτ−1 = τ−1

0 exp(−I/h̄). The
prefactorτ−1

0 is an attempt frequency,I is some action, and exp(−I/h̄) may be interpreted
as a tunnelling probability.

Here we are interested in the tunnelling of a giant spin with spin quantum numberS � 1
under the influence of a time-dependent perturbation. The solution to this problem is of
particular relevance to mesoscopic magnetic moments [6, 10] in an anisotropy field. In the
stationary case, the difference between spins and particles is already remarkable. Whereas
particles give rise to an actionI which shows, typically, a square-root dependence upon the
coupling constants, spins exhibit alogarithmic dependency [3, 4]. In a periodically driven
system, particles commonly tunnel more quickly than under the influence of a constant
potential [11–13]. The key question is now: How dospinsbehave? To answer this question
we will study a few typical models in the context of the averaging method [14, 15], that
allows a reduction to a time-independent problem which is more easily accessible to, e.g.,
a WKB analysis [3, 4]. One has to realize, however, that the WKB analysis is instrumental
in solving a time-dependent problem such as the present one. We will also discuss an
exact solution, underlining our conclusion thatin general, and in contrast to the particle
case[11–13], a periodically driven spin is hampered when it is going to tunnel. In order to
prepare the ground for the ensuing calculations, we must now make a small detour.
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The type of equation which we have to study is of the form

ẋ = εf (t, x) f (t + T , x) = f (t, x) (1)

with some ‘small’ parameterε > 0. The functionf (t, x) and its partial derivative with
respect tox are uniformly bounded inx and t by a positive constantM and are periodic in
t . Sinceε is small as compared to 1/T , x hardly changes during a period of durationT ,
and one may therefore average (1) so as to get the autonomous equation

ẏ = εf0(y) f0(y) = 1

T

∫ T

0
dt f (t, y) (2)

wheref0 does not depend on time any more. The solution to (2) approximatesx(t) to order
ε for timest 6 1/ε. The key to the proof [14, 15] which is behind what follows is defining

u1(t, x) =
∫ t

0
dt ′ [f (t ′, x)− f0(x)]

noting that, whatevert is, one has sup|u1(t, x)| 6 2MT , and studying the time evolution of
z defined byx(t) := z(t)+ εu1(t, z(t)). A simple calculation shows thatz satisfies (2)—up
to an error O(ε2). This is themethod of averaging[14, 15], which dates back to Lagrange.

The three periodically driven spin systems which we will study are typical examples,
and are characterized by the Hamiltonians

H1 = −γ S2
z − δ cos(ωt)Sz − αSx (3)

H2 = −γ S2
z − α cos(ωt)Sx (4)

H3 = −γ S2
z − α[cos(ωt)Sx + sin(ωt)Sy ] (5)

with α, γ , andδ positive. The anisotropy which produces the ‘energy barrier’ is represented
by −γ S2

z . It is assumed to dominate the other terms so that we arrive at a well-defined
tunnelling problem where the spin tunnels along theSz-axis. Phrased differently,α, δ � 0S

where0 = γ h̄ has the dimension of frequency. InH1 there is an oscillating magnetic field
parallel to the anisotropy axis; inH2 andH3 it is orthogonal to thez-axis. The fields
in H1 andH2 are linearly polarized, and that ofH3 is circularly polarized. As forH1,
the unperturbed caseδ = 0 represents coherent tunnelling in that the Hamiltonian has a
symmetry: a rotation throughπ about thex-axis; H2 has the very same symmetry. It is
natural to compare the ac behaviour ofH1 with that for δ = 0, sinceδ 6= 0 in conjunction
with ω 6= 0 in general favours tunnelling of particles [12] (Sz ↔ q). If spins were similar
to particles, kicking a spin periodically would have the same effect. It does not. ForH2

andH3, the reference state isω = 0. Given an unperturbed level splitting1E = h̄ω0,
we discern three cases:ω � ω0, resonanceω ≈ ω0, and the adiabatic caseω � ω0. For
all three Hamiltonians the reference (‘unperturbed’) operator isHu = −γ S2

z − αSx . Its
ground-state level splitting was computed more than ten years ago:

h̄ω0 = α
( α
0S

)2S−1
for S � 1 (6)

(cf. equation (C.19) in [3]).
As for the context of the present paper, a few historical and practical remarks are in

order. The problem of how a giant quantum spin tunnels was solved surprisingly late in
the history of quantum mechanics. It was only in 1986 that two types of solution appeared.
Enz and Schilling [5] solved a special case by mapping it onto a particle problem through
the Villain transformation. The particle problem was then solved to high precision by
means of a functional-integration technique. Van Hemmen and Sütő [3] started with the
Schr̈odinger equation directly and developed a WKB formalism for quantum spins, which
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is used throughout what follows. It allows both for high-precision calculations of the level
splitting and the tunnelling rate, and for a universal representation of these quantities, that
does not depend on the detailed form of the Hamiltonian and (thus) is less precise but has
been shown [4] to exactly agree with the spin-functional-integral results of Chudnovsky and
Gunther [6]. Until now, however, the Hamiltonian describing a system was not allowed to
be time dependent. Since it is a simple matter to put small magnetized particles, i.e., giant
spins, in a homogeneous magnetic ac field, and the strength of an external field is at one’s
disposal, we thought it worthwhile to analyse the ac problem in some detail.

In section 2 we treat the case of a linearly polarized field in the three frequency regimes
mentioned above. We will have recourse to the method of averaging at high frequencies,
to a two-level approximation at resonance, and an adiabatic treatment for low frequencies.
Circular polarization is to be discussed in section 3. The time evolution operator forH3

can be obtained exactly.

2. Linear polarization

Our analysis is most easily performed in a spectral representation withSz diagonal [3, 4]. In
the context of the WKB formalism theansatzfor the wave function isψ = exp[(i/h̄)S0+S1].
It is implicitly understood that we take the semiclassical limit ¯h→ 0 andS →∞ so that
h̄S = σ is constant. ThenS1 is subdominant and can be dropped. For the time being,
however,h̄ is finite. Furthermore, in our spectral representationSx = a(s)(Th̄ + T−h̄)/2
and (T±h̄f )(s) = f (s ± h̄) while a(s) = √σ 2− s2 and s ranges through the set
{mh̄:−S 6 m 6 S} ⊆ [−σ, σ ]. The time-dependent Schrödinger equation forH1 now
reads

i h̄
∂ψ(s, t)

∂t
= −[γ s2+ δs cos(ωt)]ψ(s, t)− α

2
a(s)[ψ(s + h̄)+ ψ(s − h̄)]. (7)

2.1. The high-frequency regime

Let us assume thatω � ω0 and use the interaction picture. This is equivalent to the
substitutionψ(s, t) = ψ̃(s, t)exp{(i/h̄)[γ s2t + δs ω−1 sin(ωt)]} and gives

i h̄
∂ψ̃(s, t)

∂t
= −α

2
a(s)ei0t [ei8(s,t)ψ̃(s + h̄, t)+ e−i8(s,t)ψ̃(s − h̄, t)] (8)

where0 = γ h̄ and

8(s, t) = 2γ st + (δ/ω) sinωt. (9)

We imagine that the spin has to tunnel from−σ to σ or conversely, and concentrate on
the region wheres ≈ 0, so that (8) attains the form (1). If there is a transition, it takes
place on the time-scaleω−1

0 . Therefore, and becauseω � ω0, we can average over the time
evolution during a single period of the external field. Assumings ≈ 0 we average (8) over
one period and find

i h̄
∂ψ̃a(s, t)

∂t
= −αeff

2
ei0t [e2iγ st ψ̃a(s + h̄, t)+ e−2iγ st ψ̃a(s − h̄, t)] (10)

whereαeff = αJ0(δ/ω). The Bessel functionJ0 stems from

J0(z) = (1/2π)
∫ 2π

0
dϑ cos(z sinϑ)
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which is Bessel’s integral [16, 17]. The ‘averaged’ functionψ̃a plays the role ofy in (2) with
ε corresponding toαa(0)/h̄ = αS, and obeys the same equation as a wave function in the
time-independent case whereδ = 0; cf. (8) and (9). The only—but important—modification
is thatα has been replaced byαeff; the latter reduces toα, if δ = 0.

We can apply the averaging method, if two conditions hold. First,ε � 1/T as discussed
after (1). In the present case this means thatαS � ω = 2π/T and implies [3]ω0 � ω.
Second, the argument of8 in (8) should vary slowly with time:γ |s|T � 1. This is
equivalent to|s| � h̄ω/0. As long asω/0 � 1 the region wheres ≈ 0 has a finite width.
Usually the spin has to tunnel from−σ to σ and conversely (or the like). If it is hindered
nears = 0, tunnelling is hampered or blocked.

The Bessel functionJ0 has infinitely many zeroszν , the first beingz1 = 2.405.
Furthermore,|J0(z)| 6 1, and its maximum, i.e., 1, is assumed atz = 0. So we see
that a spin never tunnels faster than in the stationary case whereδ = 0 because|αeff| 6 α.
It can even get stuck, ifδ/ω := z corresponds to one of the zeroszν of the Bessel function
J0. This allows a simple but striking experimental check: the spin gets stuck at discrete
frequencies whose ratios are determined by the Bessel zeroszν .

Turning toH2, we perform the transformationψ := ψ̃ exp(iγ s2t/h̄), obtain

i h̄
∂ψ̃a(s, t)

∂t
= −α

2
a(s)ei0t cos(ωt)[e2iγ st ψ̃a(s + h̄, t)+ e−2iγ st ψ̃a(s − h̄, t)] (11)

and average this in the region wheres ≈ 0 so as to findαeff = 0. That is to say, tunnelling
is blocked completely—in clear contrast to the case whereω = 0.

2.2. The adiabatic case

The adiabatic case whereω � ω0 can be handled straightforwardly. BecauseH1(t)

changes very slowly on the time-scaleω−1
0 given by the original tunnelling time, we can

consider it as a time-independent operator depending only on a formal parametert , and
write H1(t) = H0(δ cosωt) where the latter is defined through equation (21) below. The
discussion of section 3 leading to equation (31) is therefore relevant to this case also (recall
that |δ cosωt | 6 δ � 0S), and we conclude that the tunnelling probability—say, in the time
interval (t −2πω−1

0 , t +2πω−1
0 )—suffers a small reduction proportional to(δ cosωt/0S)2.

The tunnelling rate forH2 is determined as follows [3]. We pick a certain timet , write
α(t) = α cos(ωt), and treat it as a constant as long asα(t) is outside a suitably chosen
neighbourhoodN (0) of zero† so that the ‘effective’ tunnelling time is much less thanω−1.
Keeping the proviso in mind that we stay outsideN (0), we substitute the WKBansatz
ψ ∼ exp(iS0/h̄), and computeS0(s, t) = W(s)− Et in the semiclassical limit, as ¯h→ 0:

E = −γ s2− α(t)a(s) cos

(
∂W

∂s

)
. (12)

This we can solve forW . Now the tunnelling rate isτ−1 = 1E/πh̄ and1E ∝ |〈φ`|φr〉|
whereφr andφ` are the WKB wave functions belonging toE which start either on the right
or on the left ofs = 0. We have arccos(Z) = ±(1/i) arccosh(Z) and arccosh(Z) ≈ ln(2Z)

† In the adiabatic regime,ω � ω0. However, the ‘effective’ tunnelling frequencyω0(t) that one can compute
from equation (6) by replacingα by α(t) becomes much smaller thanω as time goes on. That is to say, starting
with ω � ω0(0), one passes from the adiabatic case att = 0 to the high-frequency case, via resonance, as time
proceeds. ForH2, this is the heart of the problem in performing the adiabatic approximation. The neighbourhood
N (0) depends onω.
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for largeZ. The upshot of the calculation is

τ−1 = τ−1
0 exp

[
−2S ln

(
2|E|

|α(t)|/γ σ
)]
. (13)

In passing we note that the logarithm in the exponential istypical of spins [3, 4]. It
stems from the arccosh term. For the ground-state pair withE := −γ σ 2, we are left with
τ−1 = τ−1

0 [|α(t)|/2γ σ ]2S , which can be compared directly with (6). The order of magnitude
has been confirmed fully by a numerically exact diagonalization of the Hamiltonian [3],
which gives the level splitting1E = πh̄/τ . If desired, one may averageτ−1 over one
period onceN (0) is small enough and, by Wallis’s formula [16], end up with an extra
prefactor—an explicit expression that decreases as 1/

√
πS for S large and entails a reduction

of the unperturbed tunnelling rate.

2.3. Resonance

The resonance case whereω ≈ ω0 is of some independent interest. Its treatment has
been included here since a spin offers some subtleties which are not present in the
standard argument [20]. Here we can invoke the two-level approximation [4], which is
specific to the resonance condition. We start withH1 and writeH1 = Hu + V (t) where
Hu = −γ S2

z − αSx and V (t) = −δ cos(ωt)Sz. We concentrate on the ground-state pair
{ϕ(0)0 , ϕ

(0)
1 } of Hu with 1E = E(0)1 −E(0)0 ≡ h̄ω10 whereω10 = ω0 is given by equation (6).

Let ψ(0)
k = ϕ(0)k exp(−iE(0)k t/h̄). The wave function can be expanded in the form

ψ(t) =
∑

ak(t)ψ
(0)
k (t). (14)

Denoting differentiation with respect to time by a dot, we obtain i ¯hȧm =
∑

k Vmkak, the
Vmk being the matrix elements with respect to theψ(0)s. In agreement with the two-level
approximation we restrictk to the set{0, 1}. We have

V10 = −δ cos(ωt) eiω10t
S∑

m=−S
ϕ
(0)
1 (m)mh̄ ϕ

(0)
0 (m) (15)

while the diagonal elementsV00 andV11 vanish since theϕ(0)k are odd or even; there is no
harm in assuming them to be real. The sum in (15) is written as ¯hv10. For the ground-state
pair [3], v10 ≈ S. PuttingC = δv10/2 and� = ω−ω10, we are left with only two equations:

ȧ0 = iC(eiωt + e−iωt )e−iω10t a1 ≈ iCei�ta1 (16)

ȧ1 = iC(eiωt + e−iωt )eiω10t a0 ≈ iCe−i�ta0. (17)

The second equality is a consequence of therotating-wave approximation[19], which entails
dropping the fast-rotating terms. It respects the normalization of the wave function. Since
|�| � ω + ω10 and the frequencies under consideration are rather high, the approximation
is a good one. The above equations closely resemble but are not identical to those derived
by Rabi [21] in the thirties.

Given a first-order differential equation, one has to specify initial conditions. The
spin starts, say, on the left, in the neighbourhood ofm = −h̄S. Now for largeS the
eigenfunctionsϕ(0)0 and ϕ(0)1 of Hu have the remarkable property [3] that to a very high
precision the functions(ϕ(0)0 ± ϕ(0)1 )/

√
2 are localized atm > 0 andm < 0, respectively;

cf. also equations (26) below. We can therefore takea0(0) = a1(0) = 1/
√

2 as an initial
condition and ask whether at a later timet we find a0(t) = −a1(t) = 1/

√
2 or, in other

words, whether the spin is in the other well.
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We first study the case of perfect resonance, i.e., where� = 0. Then (16) and (17)
can be solved directly. Leta denote the vector(a0, a1) and letσx be the first Pauli spin
matrix. The solution isa0(t) = a1(t) = exp(iCt)/

√
2, becausea(t) = exp(iCσxt)a(0)

and the initial condition(1, 1)/
√

2 is an eigenvector ofσx with eigenvalue 1. So the wave
function at timet is

ψ(t) = 1√
2

e−i(E(0)0 /h̄−C)t [ϕ(0)0 + e−iω10tϕ
(0)
1 ] (18)

and the spin oscillates with the unperturbed frequencyω10 between the two wells.
For non-zero� we proceed̀a la Rabi [21] and differentiatea1 twice, use (16) as well,

and get a second-order linear differential equation:

ä1+ i�ȧ1+ C2a1 = 0. (19)

This can be solved by the simpleansatz

a1(t) = A exp(iµ+t)+ B exp(iµ−t)

where theµ± are the two roots of the equationµ2 + �µ − C2 = 0. Near resonance we
find a1 = a0 exp(−i�t) and hence, due to (14),

ψ(t) = e−iE(0)0 t/h̄a0(t)[ϕ
(0)
0 + e−iωtϕ

(0)
1 ] (20)

as� + ω10 = ω. That is, near resonance we find a narrow frequency window where the
spin oscillates in phase with the external field. One might think that resonance also occurs,
if, say, ω = ω30. In principle this is correct, were it not that the corresponding matrix
elementv30 vanishes to high precision. That is, we need another kind of argument. The
above reasoning hinges on the symmetry properties of the unperturbed eigenstates and, thus,
does not apply toH2.

3. Circular polarization: an exactly soluble case

The third case (5) of a field with circular polarization can be treated exactly. The solution
to a time-dependent Schrödinger equationH(t)ψ = i h̄ ∂ψ/∂t starting at timet = t0 is
the unitary groupU(t, t0) satisfyingU(t, t ′)U(t ′, t0) = U(t, t0) with the initial condition
U(t0, t0) = 1. In the case ofH = H3(t), the time evolution operatorU(t, t0) has a nice
closed form [18]. Indeed, if we define

H0(ω) = −γ S2
z − ωSz − αSx (21)

and writeH0 = H0(ω), then

U(t, t0) = exp

(
− iω

h̄
tSz

)
exp

[
− i

h̄
(t − t0)H0

]
exp

(
iω

h̄
t0Sz

)
. (22)

To prove (22) we note thatU(t0, t0) = 1 and via a direct computation

i h̄ ∂U(t, t0)/∂t = H3(t)U(t, t0). (23)

Let |m〉 and|n〉 be two eigenstates ofSz with eigenvaluesmh̄ andnh̄, respectively. The
quantity

Pmn(t) = |〈m|U(t, 0)|n〉|2 (24)

is the transition probability for a spin starting in|n〉 at time t = 0 to be in state|m〉 at time
t . Because of equation (22),Pmn assumes the simple form

Pmn(t) = |〈m|e−itH0/h̄|n〉|2 (25)
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so the transition probability is fully determined byH0(ω). We are interested in transitions
between|n < 0〉 and |m > 0〉, corresponding to a tunnelling situation.

Let us consider the case wherem = S, n = −S in some detail. We recall that forω = 0

|S〉 ≈ 1√
2

(
ϕ
(0)
0 + ϕ(0)1

)
|−S〉 ≈ 1√

2

(
ϕ
(0)
0 − ϕ(0)1

)
. (26)

This approximation is a good one as long asα � 0S. Hereϕ(0)0 andϕ(0)1 are the lowest
even and odd eigenstates ofH0(ω = 0); cf. figure 8 in [3] or figure 7 in [4]. Using (26)
we find

PS,−S(t) ≈ 1

4
|1− e−itω0|2 (27)

and

max
t
PS,−S(t) ≈ PS,−S(πω−1

0 ) ≈ 1. (28)

For 0< ω � 0S we still have

|S〉 ≈ aϕ + bψ
|−S〉 ≈ bϕ − aψ (29)

whereϕ andψ are eigenstates ofH0(ω), tending respectively toϕ(0)0 andϕ(0)1 asω → 0.
However,ϕ andψ have no even–odd symmetry:∑

m>0

|〈m|ϕ〉|2 >
∑
m<0

|〈m|ϕ〉|2 (30)

the< sign holding forψ . We therefore havea2+b2 = 1 anda > 1/
√

2, a−1/
√

2∝ ω/0S.
Equations (25) and (29) then yield

PS,−S(t) 6 4a2(1− a2) = 1− c(ω/0S)2 (31)

with somec > 0 of the order of unity. Asω increases,PS,−S(t) rapidly approaches zero
since the|±S〉 get closer and closer to two eigenstates ofH0(ω), which are separated by
an energy difference∼2Sh̄ω.

The properties ofPmn for m > 0 andn < 0 such that|n| > m and (m + |n|)0 � α

(in practice, whenm + |n| is of the order ofS) resemble that ofPS,−S : maxt Pmn(t) as a
function of ω has a local maximum close to 1 near the frequency(|n| − m)0 and decays
rapidly onceω moves away from this value. This holds because there are level crossings in
the spectrum of−γ S2

z −ωSz atω = k0 for all 16 k 6 S: the eigenvalues belonging to the
eigenvectors|m〉 and|n〉 coincide for all pairs(m, n) such thatk = |n|−m. The degeneracy
of the(m, n) pair is lifted in the(m+|n|)th order of the perturbation byαSx . The condition
(m + |n|)0 � α implies that the other energy levels of−γ S2

z − k0Sz are far away, as
measured in units ofαh̄. Therefore, one obtains two approximate eigenvectors ofH0(k0)

as linear combinations of|m〉 and |n〉. Inverting this relation, we arrive at an expansion,
analogous to (29), for|m〉 and |n〉. The asymmetrya − b of the wave functions and the
tiny level splitting can be computed from the matrix elements of(αSx)

(m+|n|) sandwiched
between|m〉 and|n〉. Now a−b vanishes asα/[(m+|n|)0] approaches zero, and the level
splitting yields a tunnelling frequency similar to (6).

The present result forH3 fully confirms the approximate calculation forH2 in the high-
frequency regime. It is easy to imagine more complicated Hamiltonians, e.g., a circular
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polarization about an arbitrary axis, but the reader will easily verify that one can just repeat
one of the above arguments—up to a simple modification.

We could take, for instance, they-axis as the rotation axis and study

H4 = −γ S2
z − α[cos(ωt)Sz + sin(ωt)Sx ]. (32)

We then perform the very same transformation as the one from (7) to (8) and (9), and
replaceα in (8) by α sin(ωt) and δ in (9) by α. Averaging (8) in the region wheres ≈ 0
we arrive at a vanishingαeff. Hence tunnelling of a mesoscopic spin is blocked.

4. Conclusion

In view of the available evidence we tentatively suggest that a periodically driven
mesoscopic spin is (nearly) always hampered or even blocked once the frequencyω is
large enough. There are two cases: a linearly and a circularly polarized field. If the ac field
is linearly polarized and parallel to the anisotropy axis, as in (3), then there exists a narrow
transparent frequency window around the unperturbed tunnelling frequency. Outside this
window the spin is hindered both in the high-frequency regime and in the adiabatic case.
If the oscillating field is orthogonal to the anisotropy axis, as in (4), the spin is blocked
completely in the high-frequency domain and seriously hampered in the low-frequency
(adiabatic) range. Of course one might object that the high-frequency behaviour is to be
expected ‘since’ a rapidly changing external field in general hampers precession. Precession,
however, is in the classically allowed region whereas tunnelling is not. So hampering of
tunnelling is not physically evident. It is a big advantage of the WKB technique that it
allows a direct mathematical analysis of an ac field.

A circularly polarized field with its rotation axis parallel to the anisotropy axis, as in
(5), leads to easy tunnelling at the frequenciesω = 0, 20, . . . , S0 and a blocking of the
spin in between and asω increases beyondS0. This result is exact, at least as far as
time evolution is concerned. In the case where the direction of rotation is orthogonal to
the anisotropy axis, no exact solution is known (yet) and we have to invoke the averaging
method so as to infer that tunnelling is blocked. Spins are apparently hampered by an ac
field, once the frequency is high enough. At first sight this might contradict intuition, but
one has to realize that the time evolution operator, though linear, has the Hamiltonianin
the exponent. Hence averaging is non-trivial.

On the basis of the present data we cannot but formulate the hypothesis that in general
an ac field hampers spin tunnelling. If so, the behaviour of spins is in clear contrast with
particle tunnelling [12] where, except for in the resonance case, a periodic drivingalways
enhancesthe tunnelling rate. This makes mesoscopic spins a fascinating subject in their
own right.
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Universiẗat München for hospitality and support during stays that have made their
collaboration possible. AS is most indebted to the Hungarian Scientific Research Fund



ac-hampered tunnelling of magnetization 3097

(OTKA) for additional support under grant No T14855. JLvH thanks Eugene Chudnovsky
for a very pleasant stay at CUNY and helpful comments.

References

[1] Pauli W 1933 Handbuch der Physikvol XXIV/1, ed H Geiger and K Scheel (Berlin: Springer) p 260
(reprinted in vol V/1 in 1958)

There also exists an English translation:
Pauli W 1980General Principles of Quantum Mechanics(Berlin: Springer) section 12

[2] Bohm D 1951Quantum Theory(Englewood Cliffs, NJ: Prentice-Hall) (reprinted 1989 (New York: Dover))
See in particular ch 12.

[3] Van Hemmen J L and S̈utő A 1986Europhys. Lett.1 481
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